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Polarization Diversity Active Imaging

1. Summary

This final report documents the second phase of the Polarization Diversity Active Imaging

(PDAI) research program performed at the Physics department of the University of Alabama in
Huntsville (UAH).

Polarization Diversity Active Imaging illuminates a scene or target with a sequence of
polarization states and then measures images of the polarization states scattered from the scene or
target. These polarization images are then analyzed to provide additional details in the optical

signature of objects by quantifying the object interaction with polarized light.

The first phase of this research program has investigated the possibility to discriminate and
identify targets from their polarization signatures. Measurements were taken on two types of targets
(spherical and conical targets) by using the Mueller Matrix Imaging Polarimeter (MMIP, see
Annexe A). The polarization characteristics were deduced from the polar decomposition method
developed by S.Y. Lu and R.A. Chipman [1]. The different data sets obtained have showed an
existing correlation between the orientation and the shape of the object and its polarization signature.
During the second phase, we have extended our research in order to study the behavior of one of the
previous target (brass (gold-toned) cone with rounded tip used as a re-entry vehicle model) for
different positions of the target and positions of the detection system (polarization analyzer). The
analysis performed for each position finally provides the dynamic behaviors of the target depending
on either its orientation or the position of the detection system. Both cases lead to a complete
description of the target through its polarization signature expressed in terms of depolarization,

diattenuation and retardance properties.

The second goal of the phase II was the development of an estimation method for

determining the refractive index of a target from its Mueller matrix image. The method has been
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Polarization Diversity Active Imaging

applied on the four previous spherical targets, described in the precedent reports, and on four other
objects (metal and glass plates). Our investigations show that the refractive index can be estimated
either by using data resulting from the polar decomposition method or from the Mueller matrix
image of the object after different steps of data processing. Both methods lead to the same results

and require the resolution of the fundamental equation of Ellipsometry.

This final report documents the following accomplishments performed during the second

phase under our AFOSR contract:

° Measured the Mueller matrix images of the brass cone under different orientations of the

target and the polarization analyzer of the MMIP

° Calculated polarization signatures of the brass cone
. magnitude and orientation of the retardance
. magnitude and orientation of the diattenuation
. polarizance and depolarization index
. horizontal-to-vertical and left-to-right crosstalks

° Upgraded the Mueller Matrix Imaging Polarimeter with a new 16 bits CCD camera

° Developed technique to estimate the refractive index from a Mueller matrix image
° Calculated the refractive index for our spherical targets
° Calculated the refractive index for four other objects

Two important remarks must be mentioned from these different investigations:

° Some of the polarization characteristics (diattenuation and retardance) become difficultly
exploitable when the orientation of the object or the position of the polarization analyzer
varies. Polarization signatures are then too noisy to recognize either the shape or the

orientation of the object.

UAH, Polarization and Lens Design Laboratory page 5




Polarization Diversity Active Imaging

° The refractive index can not be estimated from the previous spherical targets. The small
value of the angle of incidence does not permit a good estimation. However, refractive
indices deduced from the other objects (estimation of the refractive index from a plane

surface) are in agreement with values given in the literature.

However, further investigations are necessary to comfort these results and to complete this
work. The extension of the study using some very specific samples (calibrated in roughness and
machined in only one material for example) will improve a lot the understanding of the polarization

phenomena.

UAH, Polarization and Lens Design Laboratory page 6




Polarization Diversity Active Imaging

2. Movie samples obtained from the PDAI technique

First investigations concerning the polarization signatures of spherical and conical targets
were obtained only for a given orientation of the object under analyzed. The bistatic angle used for
these characterizations was about 10 degrees. Such a configuration gives only a static description
of the polarization signature of any object and can not give an estimation of how the signature will
be for an other position of the target or the detection system. During this second phase we have
extended the previous analyzes corresponding to a “static configuration” to a “dynamic
configuration”. This analysis was performed by using one of the targets for which the signature was
well defined: the brass (gold-toned) cone with rounded tip. Two configurations were applied for this
analysis. First, the object was rotated and the polarization generator and polarization analyzer of the
MMIP were maintained in the same position. Secondly, the orientation of the object was maintained
and the position of the polarization analyzer was changed. Both methods give similar results and

relatively well describe the polarimetric behavior of the object as function of its position.

2.1. Rotation of the target

The polarization signature of the brass cone was measured for different positions of the
target. The value of the bistatic angle was 10 degrees. The light source was a HeNe laser emitting
at 633 nm. The brass cone was rotated from 0 degree (cone perpendicular to the laser beam) to 180
degrees with a rotation step of 10 degrees as shown in Figure 1. For each position we have applied
the polar decomposition onto the Mueller matrix images and observed the evolution of the following
parameters:

- magnitude and orientation of the retardance

- magnitude and orientation of the diattenuation

- horizontal-to-vertical and left-to-right crosstalk

- polarizance and depolarization index

UAH, Polarization and Lens Design Laboratory page 7
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Polarization generator

Polarization analyzer

Figure 1: First geometry of test of the brass cone.

The following sets of images, presented on pages 9-12, have been extracted from a movie
generated by using for each position the polarization signatures of the brass cone. They present the
evolution of each parameter previously mentioned for six different positions of the targets from 0
degree to 150 degrees. Images were taken with a relatively large size (200 x 70 pixels) in order to

have a very good definition.

As shown on Figure 3 which represents the magnitude and orientation of the retardance, the
signature of the object is obvious whatever its position. The orientation of the retardance describes
perfectly the shape of the object and its orientation. For example, the orientation of the object for
the first two positions (0° and 30°) seems to be identical when we observe only the magnitude of
the retardance. However, from the orientation we can deduce from the first image that the right
extremity of the cone is closest to the polarization analyzer than the tip. On the second image the
positions of the right extremity and the tip are inverted. Orientation and shape are a little more

described by the line graphs on Figure 2 and on Appendix B.

From the orientation of the diattenuation (Figure 4),the orientation and the shape of the brass

cone can be only estimated when the orientation of the target is ranged from 50 to 130 degrees. For
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the other positions the magnitude of the diattenuation is very weak which leads for the orientation

to a noisy pattern difficultly interpretable.
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Figure 2: Retardance and diattenuation ligne graph images for position 60° .

Horizontal-to-vertical and left-to-right crosstalk images (Figure 5) have also some significant
changes according to the position of the target. The first set of images (horizontal-to-vertical
crosstalk images) gives much more details on the orientation and shape of the object than the second

set.

Polarizance and depolarization index images (Figure 6) do not give so many details on the
orientation and shape of the target. However, such parameters remain essential to estimate the

polarizing and depolarizing bower of the object.

|
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Magnitude of the retardance (Position: 0 degree)

B e ]

Magnitude of the retardance (Position: 150 degrees)

Figure 3: Magnitude and orientation images of the retardance
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°).

UAH, Polarization and Lens Design Laboratory
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50

Orientation of the diattcouation (Position: 0 degree)

Oricntation of the diattcreation (Position: 30 degrees)

Oxicatation of the diattenuation (Position: 60 degrees)

AT T T A T

Magnitude of the diattenuation (Position: 150 degrees)

90  Oricatation of the diattcnnation (Position: 150 degrecs)

Figure 4. Magnitude and orientation images of the diattenuation

for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°).

UAH, Polarization and Lens Design Laboratory
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Hor-to-Ver. crosstalk (Position: () degree)

Hor.-to-Ver. crosstalk (Position: 30 degrees)

Hor--to-Ver. crosstalk (P . Left-to-Right crosstalk (Position: 60 degrees)

R va—

T

Hor.-10-Ver. crosstalk (Positio

Figure 5: Horizontal-to-vertical and left-to-right crosstalk images
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°).
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Dcpolari@tiog indcx (Position: 0 degree)

B e S)

Depolarization index (Position: 150 degrees)

Figure 6: Polarizance and depolarization index images
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°).
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2.2. Rotation of the polarization analyzer

The initial position of the polarization analyzer corresponds to a bistatic angle of 15 degrees.
The principal axis of the cone is 10 degrees off of the direction perpendicular to the propagation
direction of the laser beam. Measurements were taken using a rotation step of 5 degrees for the
polarization analyzer (Figure 7). Images have a smaller resolution (150 x 50) than the previous data

sets in order to reduce the calculation time during the data reduction process.

| Polarization

. generator

Polarization
analyzer

Figure 7: Second geometry of test of the brass cone.

The characteristics obtained from this configuration have not a so good resolution than the
precedent sets but the dynamic behavior of each parameter confirms those previously found.
Retardance, diattenuation, crosstalk and polarization images corresponding to this set are presented

in Appendix C for six distinct positions of the polarization analyzer (15°, 30°, 45°, 60°, 75°, 90°).

UAH, Polarization and Lens Design Laboratory page 14
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3. Estimation of the refractive index from the Mueller matrix image

3.1 Introduction

Numerous studies have been conducted to understand the interactions of light with dielectric
or conducting surfaces either in reflection or refraction (transmission). This behavior is expressed
mathematically from a set of equations called Fresnel’s equations. For an air/conducting interface
Fresnel’s equations for reflection are [2]:

n.cos6,-cosO

- la
e n.cosﬁiﬂzoser (12)

cos(;)i-n.cosﬂr )
r, = —————— 1
§ cos6i+n.cos6' (16)
where 0, and 0, are the angle of incidence and the angle of refraction respectively and n the
refractive index of the medium. For conducting media, the refractive index becomes complex and

has the form n (1 - ik) where n is the refractive index and k the extinction coefficient.

Although problems involving polarization in reflection and refraction are complex, they can
be treated in a simple way by expressing the Fresnel’s equations in the form of Stokes vectors and
Mueller matrices. Both reflection and refraction lead to Mueller matrices which correspond to
polarizing elements. Mueller matrices for reflection are directly expressed from the reflection
coefficients which describe the amplitude and phase changes of the incident light after reflection
onto the surface. The refractive index is then deduced by first determining the normalized reflection

coefficient and by resolving the fundamental equation of Ellipsometry.
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3.2. Mueller matrix for reflection

As the reflection of a light onto a surface results in a change of amplitude and phase of the
incident fields, the reflection coefficients r, and r, can then be expressed in terms of these changes.

If rp and rg are defined as:

o
w

|

p,Expli.{,] (22)

w~ o
w v

psExpli- ¢yl (2b)

H
i
Il

w
(o3

S

where p, and p, represent the amplitude changes and ¢, and ¢ the phase changes of each

component respectively, then, we can introduce a new parameter: the normalized reflection

coefficient p defined by:
l.P
p = = = Tany.Exp[i.A] = pExp[i.A] 3)
I
S
R_.E P
with Tan = —° = 2
RS.EP s
and A = ¢s—¢P

The final expression of the Mueller matrix for reflection M, is obtained by formulating the
equations of ellipsometry in terms of the ABCD matrix and the Stokes polarization parameters. M

is than expressed from the normalized reflection coefficient p as [3]:

(1+Tan2\|: 1-Tan?y 0 0
PsPs (1-Tan?P 1+Tan 0 0
M, - M[m J= 5o [l 7Ten7¥ 1rTen’y )
’ 2 0 0 2.Tan.cosA -2.Tan{.sinA
| 0 0 2. Tan.sinA  2.Tan{.cosA |
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3.3. Determination of M, from an experimental Mueller matrix

Usually the Mueller matrix resulting from an experiment is given in an arbitrary coordinates
system which does not correspond to the S-P coordinates system used to describe M, Then

different operations must be applied onto the experimental Mueller matrix in order to obtain M.

First the experimental Mueller matrix M is deduced from the Mueller matrix image of the
surface of the object by determining an average Mueller matrix in the specular direction. In this
direction the angle of incidence is equal to half of the value of the bistatic angle. M is then
decomposed, by applying the polar decomposition, to a product of three matrices (depolarization,

retardance and diattenuation matrices) in order to extract the depolarizing component.

M = MM M_ (5)

/ _ 1af =
M,/ =M'M=MM (6)
When the depolarization has been extracted from the average Mueller matrix, M, must be

rotated by an angle O to be expressed in the same coordinate system of M.

M, = R(26).M, R(-20)

_ / (7
M, = R(-26).M, 'R(20)

We know, from the eigen-values equation, that if we apply any incident polarization state
in one of the eigen-directions of an element, the emergent state will have the same polarization. The
simplest way to determine O is to define what incident linear polarization will emerge with a null
ellipticity. The orientation of the incident linear polarization then gives the angle 0 representing the
orientation of one of the eigen-directions relative to the horizontal direction (reference). In general

the Mueller matrix resulting from the product of two non-depolarizing Mueller matrices is

UAH, Polarization and Lens Design Laboratory page 17
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inhomogeneous. The matrix is homogeneous only if the first two matrices have their eigen-
directions aligned. From both cases 0 can be deduced by applying the technique previously

described. From this assumption, O is determined by resolving the following relationship:

Ellipticity [Mpsr .S(0)] =0  (S(0): linear polarization state oriented at 0)
or

m, + msl.cos(Ze) + maz.sin(ZG) =0 (8)

The solutions of this equation then give the two eigen-directions of M, . These solutions are:

2 2 2
+ —_— —
m32 m30 m

32 (9)

By applying one of these solutions in the equation (7), the form of the experimental Mueller
matrix becomes the standard form of M,.¢ (equation (4)). The reflection coefficient can then be

estimated after this transformation.

The inhomogeneity can be expressed in terms of the solutions 0, and 0, as:

n = Cos(10, -6,D 0<n<1 (10)

3.4. Estimation of the normalized reflection coefficient

By applying onto the Mueller matrix M a horizontal linear polarization and a vertical linear

polarization respectively, we obtain the magnitude of the normalized reflection coefficient p:

S _.+S S .S
OH "1H ov "1V (11a)

Ps =
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[0} S .-S
_ ov "1 (11b)

_*?
Ps Sorr*S 1

P, =

where Sy and S;v (Son and Sy are the first and the second components of the emergent Stokes

vector when the incident Stokes vector is vertical (horizontal).

In the same way, the phase shift A can be deduced by applying either a linear polarization

at 45° or a right circular polarization:

S3 SSR
A = ArcTanS—“ = ArcTan|— (12)

2, 2R

S, and S 5 (S ;rand S ;p are the third and the fourth components of the emergent Stokes vector

when the incident Stokes vector is linear oriented at 45° (right circular).

In terms of the elements of the Mueller matrix M,¢ the normalized reflection coefficient is

completely defined by:
o = & _ m, My, My Ty, (13)
° Ps m,tm,, tmtm,,
m_m
A = ArcTanl 2.z (14
2\m,, m,

3.5. Estimation of the normalized reflection coefficient from the polar decomposition

The normalized reflection coefficient can also be estimated directly from the parameters
coming from the polar decomposition of the Mueller matrix (retardance and diattenuation). The

application of the polar decomposition onto a Mueller matrix returns the full polarimetric

UAH, Polarization and Lens Design Laboratory page 19
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characterization of the medium or the element described by the matrix. As shown by the equation

(5), The polar decomposition gives retardance diattenuation, and depolarization properties.

Retardance represents the difference in phase accumulation between two polarization states.
The retardance has three degrees of freedom which can be expressed as the horizontal-vertical
retardance, the 45°-135° linear retardance and the right-left circular retardance. The diattenuation,
which refers to the difference in attenuation between two orthogonal states, has also the same three
degrees of freedom. The phase shift between the S and P components corresponds to the linear
retardance R; . The change in the amplitude ratio between these two components S and P is deduced

from the linear diattenuation D; .

- 2 2
R = D" +D" (15)
— 2 2
D =,D" D" (16)
p = (1-D)).Exp[iR ] a17)

3.6. Determination of the refractive index from the solution of the fundamental equation of

ellipsometry

The solution of the fundamental equation of ellipsometry is obtained by expressing the
Fresnel’s coefficients in reflection (equation 1) from the refractive index of the medium and the
angle of incidence 0; The final expression for r, and r, is obtained by using the Snell’s law of

refraction.
) 1 .
Sin6_= —;smei (18)

Equation (3) can then be rewritten as:
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n2cos0 —,/n 2-5inZ0, cos0.+‘/n 2_in%0,
1 1 1 (19)

1
nzcoseiﬂ/nz—sinzei cos@i—d 2—sinzei

The resolution of the equation (19) leads finally to the solution of the fundamental equation of

p_‘_

ellipsometry which expresses the refractive index n versus the normalized reflection coefficient and

the angle of incidence:

1 B 2 1/2
1+ —P| tan0. (20)
1+p !

n = sin@i.

3.7. Precision on the estimation of the refractive index

The determination of the refractive index is straightforward if we applied the polar
decomposition. However, this second method does not permit us to estimate the precision onto the
refractive index from the errors on the elements of the Mueller matrix. The first method is preferable
because it gives the expression of the normalized reflection coefficient from the m; coefficients. The

precision on the refractive index can then be obtained from the error function defined by:

on )2 on )2 o | a |
en = J(G_O] A6i+[ am ] Amoo-f-( am ] Am01+.‘. +[ am ] Am33 (21)
i 00 01 33

where each derivative is deduced from the equation (20) by expressing the normalized reflection

coefficient in terms of the m; coefficients. The terms Am  are deduced from the data resulting from

a calibration of the Mueller matrix imaging polarimeter.
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4. Results

4.1. Estimation of the refractive index for the spherical targets

The refractive index of each spherical target was estimated by using the first method
previously described. The area from which the average Mueller matrix has been determined was not
large enough to provide a good estimation of the refractive index. Furthermore, the bistatic angle
for these measurement was about 10 degrees, which gives an angle of incidence of about 5 degrees.
In these conditions the reflection coefficients r, and r, have almost the same magnitude. As the
normalized reflection coefficient is deduced from the ratio of the reflection coefficients, a small
variation on the magnitude of r, and r, can produce a large error on the final result. The refractive
index obtained for each target is given on table 1. They are given only as example and must not be
considered as good. Most of the parameters used for their determination (mainly the angle of

incidence) were not precise enough to get a good estimation.

Estimation of the refractive index from Mg,

Po = 0.9683 A =-0.0098 rad.
Stainless steel sphere | p =-0.9682 + 0.0094 1
n=0.531 (1 - 0.294 I)

Po = 0.9955 A =-0.0131 rad.
Ping-pong ball p=-0.9955+0.013 1
n=0.430(1-2.9361)

po = 1.0038 A =-0.0004 rad.
Plastic sphere p=-1.0038 + 0.0004 I
n=43814 (1-0.104 1)

pPo=1.0335 A =-0.0027 rad.
Wooden sphere p=-1.0335+ 0.0028 I
n=0.564 (1-0.079 1)

Table 1: Refractive index of each spherical target deduced from the Mueller matrix image.
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4.2. Estimation of the refractive index of metal and glass plates

As shown on the precedent section, the estimation of the refractive index from the
polarization signatures of spherical targets is not obvious when the angle of incidence is very small.
We have extended our method in the case of object with plane surfaces in order to validate our
estimation method. Four new objects were measured at an angle of incidence of 45 degrees

corresponding to:

- an aluminum plate
- a steel plate
- microscope slide (borosilicate glass)

- a plexiglass plate

The refractive index was measured from the average Mueller matrix deduced from a large
area (see Table 2) and for each individual pixel in order to get an estimation of the variation of the
refractive index over the surface analyzed. The average refractive index for each material is given

on Table 2.

Average refractive index

Aluminum plate | n=0.388 (1-12.6771) Nb. Of pixels averaged: 500
g, = +(0.013+0.159 I)

steel plate n=1308 (1-4.0581) Nb. Of pixels averaged: 400
€, = +(0.046+0.170 I)

plexiglass n=1.536 (1-0.0101) Nb. Of pixels averaged: 400
€, =£(0.043+0.0008 I)

Microscope slide | n =1.697 (1 - 0.006 I) Nb. Of pixels averaged: 1200
£, = +(0.049+0.0004 I)

Table 2: Average refractive index.
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Metal plates (aluminum and steel) are both conducting materials and thus present a high
extinction coefficient. The value of the refractive index of aluminum for deposited film given in the
literature is n = 1.02, k= 7.26 for A = 600 nm. The large difference between our estimation and
the value found could be explained first by the bad optical quality of our sample and by the
relatively large variations of the optical constants with temperature as mentioned in the reference
used [4]. No reference has been found for the second sample (steel), furthermore steel is not a pure
metal but a compound and such a material can have large variation of its optical constants according
to its composition. We give here for comparison the refractive index for iron at 590 nm: n = 2.80,

k=3.34.

The last two samples are transparent materials which imply, as found by the measurement,
a null extinction coefficient. The value of the refractive index of the plexiglass given by a
manufacturer (PLASTEC, Inc.) is n = 1.488 at 656 nm. The experimental value obtained (n = 1.536)
is greater than we should expected but remains in agreement with the value given by the
manufacturer. The microscope slide made of a borosilicate glass gives a refractive index of 1.697.
The value of the refractive indices found in the literature [5] for borosilicate glasses (Bk7, BalK1,
SK4, SSK4) are comprised between 1.51 (BK7) and 1.61 (SSK4) which is, in any case, inferior to

the estimation of the refractive index of the microscope slide.

The estimated refractive indices than can be used to approximate the reflection coefficients
r, and r, using equations (1a) and (1b). Table 3 gives r, and r, for the angle of incidence of 45°.
Shown on Figure 8 are the magnitude of the reflection coefficients r, and r, deduced from the
estimated refractive index of the aluminum plate. The magnitude of the reflection coefficients of

the other samples are given in Appendix D.
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Reflection coefficients r, and

Aluminum plate r,=0.81-0.511
r,=-0.94+0.27 I

steel plate r,=0.78-0.42 1
r,=-0.91+0.23 I

plexiglass r, = 0.100-0.003 I
r, = -0.317+0.006 I

Microscope slide r, = 0.138+0.002 I
r,=-0.37-0.003 I

Table 3: Reflection coefficients r, and r, for 0, =45°.

T
\\\\ ///’ |
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Figure 8: Reflection coefficients r, (red) and r, (green) of aluminum

versus the angle of incidence (normalized reflection coefficient in blue).
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4.3. Dispersion of the refractive index

The dispersion of the refractive index is determined by estimating n for each individual pixel
of the image used to calculate the average Mueller matrix. As shown on Figure 9, The dispersion
of the normalized reflection coefficient is relatively small but it introduces 2 huge dispersion on the
refractive index. From this graph, it is obvious that an estimation of the refractive index can be
difficulty obtained when the normalized reflection coefficient is calculated from only a few pixels.
This also explains the difficulty we had to extract a correct value of the refractive index from the

polarization signatures of the spherical targets.

I_
4
i
.
5| o i
0’ a5 Sad 0 a3 05 am
Real part

Figure 9: Dispersion of the normalized reflection coefficient (Blue) and the
refractive index (red) for aluminum.

The dispersions obtained for each refractive index are given on Appendix C. The relative
variations of the real and imaginary parts are defined as:

where Xy, and Xy, are the maximum and minimum values of the real and the imaginary parts of
the refractive index. X,,..., is the mean value of the real or imaginary part of n determined from the

summation of the refractive index of each pixel.

UAH, Polarization and Lens Design Laboratory page 26




Polarization Diversity Active Imaging

5. Conclusion

During this second phase two aspects of the polarization have been studied. The first part
was an extension of the first phase and concerned the study of the behavior of the polarization
signatures according to the position either of the detection system or the target. As shown on this
report, orientation and shape of the target can be estimated whatever its position. But such results
must be examined on other types of targets (different in shape, metal, roughness, ...) in order to
validate the method and estimate the ability of the technique. However, these first results show the
strong potential of the PDAI technique for estimating orientation and shape of objects using

polarimetry.

The second phase of this research program has investigated a calculation method to estimate
the refractive index from the polarization signature of the targets. Refractive index is directly
deduced from the totally polarized part of the normalized Mueller matrix (retardance and
diattenuation). As shown on appendix D, the calculation method gives some good estimations of the
refractive index but the variations of the results yet remain important. The origin of this variation
is due to the fact that the refractive index is determined from the normalized reflection coefficient.
As the normalized reflection coefficient represents the ratio of the s and p reflection coefficients,
a variation on one of this coefficient can then induce a large variation on the final result. However,
the average refractive indices deduced from this method are in agreement with those found in the

literature.
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The Mueller Matrix Imaging Polarimeter

1. Principle

The Mueller Matrix Imaging Polarimeter (MMIP) was constructed at UAH under an
AFOSR grant issued in 1989 by program manager Lee Giles. The Mueller Matrix Imaging
Polarimeter took three years to assemble and calibrate before accurate Mueller matrix images were
being routinely measured, an indication of the complexity of the technique. The instrument formed
the basis for Larry Pezzaniti’s dissertation, which contains a wealth of information on the technique.
The Mueller matrix imaging polarimeter has become the most successful instrument in the

Polarization Laboratory and has been involved in over 30 papers.

The Mueller Matrix Imaging Polarimeter is an accurate instrument for measuring
polarization properties over a field of view in visible and near-infrared light. The MMIP can
measure the polarization and polarization scrambling properties of optical elements at a high
resolution [1]. This instrument can be configured for measurements in transmission, reflection, retro
reflection, and variable-angle scattering. The MMIP has been used for characterization of
polarization elements, beam splitter cubes[2], scattering surfaces [3], liquid crystal modulators[4],

electro-optic PLZT modulators [5], GaAs waveguide devices[6], and entire optical systems.

For Polarization Diversity Active Imaging the sample becomes a target, and the polarization
generator and polarization analyzer are configured for bistatic scattering measurements. All of the
polarization altering properties of the sample, the diattenuation, retardance, depolarization, and
polarizance, may be computed from the Mueller matrix. Diattenuation refers to the difference in
attenuation between two orthogonal polarization states (sometimes referred to as the polarizing
efficiency), retardance is the difference in phase accumulation between two polarization states,
depolarization is the coupling of polarized light into unpolarized light, and polarizance is the

coupling of unpolarized light into polarized light.
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Shown in figure 1 in its current configuration for scattering measurements, the polarimeter
may be divided into three sections: a polarization state generator, a sample compartment, and a
polarization state analyzer. The polarization state generator includes a spatially filtered laser whose
coherence has been scrambled by a spinning groung glass plate in order to remove speckle effects.
The instrument presently operates with a 633nm He-Ne Smw laser, a 1064 nm YAG laser (200
mW), a 543 nm 15 mW HeNe, and a 850nm 25mw diode laser, although configuring the instrument

with a new source is straightforward.

Spatial

filter \Target

Polarization Linear Rotating angle

Generator polarizer | quarter-wave
(fixed) retarder

Rotating

quarter-wave
retarder
Polarization Linear

polarizer

Analyzer (fixed)

Chilled 14-bit CCD,
512 x 512 pixels

Calculate and display images of
Mueller matrices, diattenuation,
retardance, and depolarization.

Figure 1 Mueller Matrix Imaging Polarimeter configured for scattering measurements

The MMIP is a dual-rotating retarder polarimeter which illuminates a sample with known
polarized states and then analyzes the exiting polarized state over a spatially-resolved image of the

sample. Highly calibrated polarization optics are used in the measuring instrument, and an extensive
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calibration procedure is followed to ensure the accuracy of the measurements . Figure 1 shows the
configuration of the MMIP in transmission. It consists of a sample compartment placed between a
polarization state generator and a polarization state analyzer, each composed of a stationary linear
polarizer and a rotating quarter-wave linear retarder. Images at 60 different orientations of the
rotating retarders are used to measure a Mueller matrix image. The Mueller matrix image is
measured by capturing the sixty different intensity images of the target. The only change between
the images is the orientations of the retarders in the polarization generator and analyzer which
induce an intensity change on the images. The 60 images are processed into a 16-elements Mueller |
matrix image [7] using a Mathematica package of data reduction and analysis algorithm developed
by our research group . Each Mueller matrix M is obtained according to the optimal (least-squares)
polarimetric data reduction equation using the pseudoinverse matrix WP’l of W where W is the
polarimetric data reduction matrix of the polarimeter:

M=W™W)'wT=w1 @

W is a matrix of dimension 16x60 describing the full sequence of measurements, and I is a

measurement vector of dimension 60 representing a set of sixty intensities.

The 4-by-4 Mueller matrix, M, relates an incident polarized state described by Stokes vector S to
the exiting (reflected, transmitted, scattered) state with Stokes vector § ’:

/ T
S (
0 Moo Moy Moy M3 So
/
m
~y S, - o By My, 1S,
S = = MS = g 2)
m m
SZ 20 My My My 11,
/ m
{S 30 My My My _S3_

3
The Mueller matrix can be written as the multiplication of a pure depolarizing matrix, D, a pure

retarder matrix, R, and a pure diattenuating (polarizing) matrix, P:

M =D'R'P 3)
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These 4-by-4 matrix images can then be decomposed into images of the depolarization,
retardance, and diattenuation [8]. These maps give a spatially-resolved description of the

polarization performance of the éample.

The illuminating source for these measurements was a SmW HeNe laser operating at a
wavelength of 632.8nm. The target (cone) is illuminated with collimated light; the specularly
reflected and scattered light passes through the polarization analyzer and is detected on the CCD

array.
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Appendix C

Polarization signatures of the brass cone
for different positions of the polarization analyzer.
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TR A Y TR TN

C1: Magnitude and orientation images of the retardance
for different positions of the polarization analyzer.
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02| i ion (Position: 60 degrees) -90)

R T SR T

N DA TR RS

(Position: 90 degrees) -90

C2: Magnitude and orientation images of the diattenuation
for different positions of the polarization analyzer.

UAH, Polarization and Lens Design Laboratory

C2




Polarization Diversity Active Imaging
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Lef-10-Right crosstalk (Position: 15 degrees) 06

e

Hor.-to-Ver.

Left-to-Right crosstalk (Position: 90 degrees)

C3: Horizontal-to-vertical and left-to right crosstalk images
for different position of the polarization analyzer.
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C4: Polarizance and depolarization index images
for different positions of the polarization analyzer.

UAH, Polarization and Lens Design Laboratory

C4




Appendix D

Dispersion of the refractive index
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D1. Aluminum plate ;
{ 1 -0.0214 0.0005 -0.0010
. -0.0332 0.9968 0.0034 0.0023
Average Mueller matrix: M =
-0.0003 -0.0075 0.9515
1-0.0011 0.0006 -0.2713 0.9565 |

Normalized reflection coefficient: p =-0.9404 + 0.2712 1

Refractive index: 0.3884 - 492391

0.2789

Orientation of the first eigen-direction: -0.150°
Orientation of the second eigen-direction: - -89.912°
Inhomogeneity: 0.004
Magnitude of the normalized reflection coefficient: 0.9788
Phase shift induced by the reflection: -16.088°
1 e
\\\\ » o
098
o [T
2 \\
'é 0.96 = /
054 < /
\ \,/
092 L. T G
0 20 60 80

40
Angle of incidence

Figure D1: Reflection coefficients r, (red ligne) and r, (green ligne) of aluminum
versus the angle of incidence (normalized reflection coefficient in blue ligne).
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Dispersion of the normalized reflection coefficient:

- mean value of the real part: -0.9404
- standard deviation of the real part: 0.0068
- mean value of the imaginary part: 02712

- standard deviation of the imaginary part: 0.0031

Dispersion of the refractive index:

- mean refractive index: 0.3866-492241
- standard deviation of the refractive index: 0.1011 +0.05201

- relative variation of the real part: 164%
- relative variation of the imaginary part:  8.45%

05 05 02 0 03 05 0B
Real part

Figure D2: Dispersion of the normalized reflection coefficient (Blue) and the
refractive index (red) for aluminum.
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D2. Steel plate ;
1 -0.0594 -0.0025 0.0061

-0.0839 0.9978 0.0038 0.0071
0.0044 0.0008 09518 0.2473
0.0073 -0.0016 -0.2359 0.9540

Average Mueller matrix: M =

Normalized reflection coefficient: p =-0.9133 + 0.2315 1

Refractive index: 1.3088 - 5.3118 1

Orientation of the first eigen-direction: 0.312°
Orientation of the second eigen-direction: 88.716°
Inhomogeneity: 0.027
Magnitude of the normalized reflection coefficient: 0.9422
Phase shift induced by the reflection: -14.228°
| P
0.95 4 \ _ B ,__,/V""
: "‘""‘——"\i“i:‘;_ii::::: "

g ool e
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08 |
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Figure D3: Reflection coefficients r, (red ligne) and r, (green ligne) of steel
versus the angle of incidence (normalized reflection coefficient in blue ligne).
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Dispersion of the normalized reflection coefficient:

- mean value of the real part: -0.9132
- standard deviation of the real part: 0.0066
- mean value of the imaginary part: 0.2315

- standard deviation of the imaginary part:  0.0069

Dispersion of the refractive index:

- mean refractive index: 1.3066-5.31781
- standard deviation of the refractive index: 0.0072 + 0.1896 1

- relative variation of the real part: 32%
- relative variation of the imaginary part:  21%

—o5 0 o5 1
Real part

Figure D4: Dispersion of the normalized reflection coefficient (Blue) and the
refractive index (red) for steel.
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D3. Plexiglass plate .
{ 1 -0.8172 -0.0037 0.0034
. -0.8384 1.0049 -0.0783 0.0115

Average Mueller matrix: M =
-0.0760 0.0890 0.5328 0.0087
{-0.0013 0.0052 -0.0131 0.5482

Normalized reflection coefficient: p =-0.3171 + 0.0061 I

Refractive index: 1.5361 - 0.0164 1

Orientation of the first eigen-direction: 0.439°
Orientation of the second eigen-direction: 46.272°
Inhomogeneity: 0.696
Magnitude of the normalized reflection coefficient: 0.317
Phase shift induced by the reflection: -1.102°
PE— // ‘

08 | N

< e

0 20 40 )
Angle of incidence

Figure D5: Reflection coefficients r, (red ligne) and r, (green ligne) of plexiglass
versus the angle of incidence (normalized reflection coefficient in blue ligne).
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Dispersion of the normalized reflection coefficient:

- mean value of the real part: -0.3170
- standard deviation of the real part: 0.0058
- mean value of the imaginary part: 0.0061

- standard deviation of the imaginary part:  0.0021

Dispersion of the refractive index:

- mean refractive index: 1.5361 -0.0164 1
- standard deviation of the refractive index: 0.0149 +0.0017 1

- relative variation of the real part: 5.5%
- relative variation of the imaginary part:  221%

0.1

Real part

Figure D6: Dispersion of the normalized reflection coefficient (Blue) and the
refractive index (red) for plexiglass.
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D4. Microscope slide ;
{ 1 -0.7587 -0.0120 0.0033
) -0.7709 0.9473 -0.0843 0.0101

Average Mueller matrix: M =
-0.0722 0.0905 0.5980 -0.0063
0.0019 -0.0013 -0.0036 0.6100 |

Normalized reflection coefficient: p =-0.3715 - 0.0031 I

Refractive index: 1.6973 +0.0101 1

Orientation of the first eigen-direction: -30.012°
Orientation of the second eigen-direction: 3.2908°
Inhomogeneity: 0.8357
Magnitude of the normalized reflection coefficient: 0.3715
Phase shift induced by the reflection: 0.480°
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Figure D7: Reflection coefficients r, (red ligne) and r, (green ligne) of a microscope slide
versus the angle of incidence (normalized reflection coefficient in blue ligne).
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Dispersion of the normalized reflection coefficient:

- mean value of the real part:
- standard deviation of the real part:

- mean value of the imaginary part:
- standard deviation of the imaginary part:
Dispersion of the refractive index:

- mean refractive index:
- standard deviation of the refractive index:

- relative variation of the real part:
- relative variation of the imaginary part:
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Figure D8: Dispersion of the normalized reflection coefficient (Blue) and the
refractive index (red) for a microscope slide.
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